Math 42-Number Theory Problem Set #2 Due Tuesday, February 15, 2011

For problems 4, 5 and 6, either prove the statement is true or give an example showing that it is false (a counterexample).

4. If a and b are elements of U_m , then a + b is in U_m .

Solution: This statement is false. For example, 1 and 3 are in U_8 , but 1 + 3 = 4 is not in U_8 .

5. If a and b are elements of U_m , then $a \cdot b$ is in U_m .

Solution: This statement is true. If a and b are elements of U_m , then they have multiplicative inverses mod m. Call these inverses a' and b' respectively. Then, we know that $a \cdot a' \equiv 1 \mod m$ and $b \cdot b' \equiv 1 \mod m$. Now, ab is an element of U_m because it has a multiplicative inverse mod m, namely b'a'. Mod m, we have

$$abb'a' = a \cdot 1 \cdot a' = aa' = 1 \mod m.$$

6. If a is in U_m , then -a is in U_m .

Solution: This statement is also true. If a is an element of U_m , as above, a has a multiplicative inverse mod m. Call it a' so that $aa' \equiv 1 \mod m$. Then -a is also an element of U_m since -a has a multiplicative inverse mod m, namely -a' as $(-a)(-a') = aa' \equiv 1 \mod m$.

9. How many solutions are there to the linear congruence $ax \equiv b \mod m$? Explain why your answer is correct.

Solution: If $(a, m) \nmid b$, then there are no solutions. If $(a, m) \mid b$, then there are (a, m) solutions. We can see that this is the case by realizing that the congruence $ax \equiv b \mod m$ is equivalent to the equation ax = b + my, where x and y are integers (by the definition of congruence). In other words, solving $ax \equiv b \mod m$ is the same as solving the linear diophantine equation ax - my = b. We know that this linear diophantine equation has no solutions if $(a,m) \nmid b$. If, on the other hand, $(a,m) \mid b$, we know there are solutions. If x_0 and y_0 are integers such that $ax_0 - my_0 = b$, then all integer solutions to ax - my = b are given by $x = x_0 - mk/d$, $y = y_0 + ak/d$, where d = (a,m). Then, there are d choices of k that make the x values incongruent mod m, namely $k = 0, 1, 2, \ldots, d - 1$. In other words, the d incongruent solutions are $x = x_0, x_0 - m/d, x_0 - 2m/d, \ldots, x_0 - (d-1)m/d$.